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Security-Enhanced (SE) Linux is a version of Linux with additional security fea-
tures. The initial version of SE Linux was released by NSA in January, 2001. The
additional security features are incorporated into Linux by superimposing the Flask
architecture on its kernel. This architecture includes a security server that makes
decisions as to whether particular subjects (i.e., processes) may be granted particu-
lar permissions to particular objects. The decisions are made in accordance with a
security policy that is a combination of a type enforcement (TE) policy, a role-based
access control (RBAC) policy, and, optionally, a multilevel security (MLS) policy.
Associated with SE Linux is a policy language in which these various parts of the
security policy can be de�ned. An important issue with respect to a given policy is
whether it achieves the high level goals for which it is intended. Because the policy
language is aimed at a detailed speci�cation of which access permissions may be
granted, the relation of a given policy to its high level goals is not obvious. Because
policy speci�cations tend to be very detailed and complex (e.g., the speci�cation
of the example security policy accompanying the SE Linux release is over 80 pages
long), establishing that the policy achieves any particular high level goal cannot
simply be done by inspection. For the analysis of policies, tool support is clearly
needed. To make it practical for members of the open source software community
to analyze security policies that they de�ne, this tool support needs to be usable
by members of this community. This paper reports progress made towards adapt-
ing the tool TAME, a PVS interface designed to support speci�cation and analysis
of automata in a user-friendly manner, to the analysis of SE Linux security poli-
cies. It describes a general approach to modeling an SE Linux security policy as
an automaton, expressing its security goals as automaton properties, and applying
TAME. It also describes the progress made in applying this approach to a subset of
the example security policy in the SE Linux release.

1. Introduction

In January 2001, the National Security Agency issued its initial release of
Security-Enhanced (SE) Linux, a version of Linux with added security features.
The purpose of the SE Linux release is to be an initial step towards providing the
means for open source software developers to make their software more secure.
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Accompanying the SE Linux release is a policy language and an example secu-
rity policy de�ned using this language. The policy language allows a developer
to specify three aspects of the policy: a type enforcement (TE) component, a
role-based access control (RBAC) component, and a multilevel security (MLS)
component. It is hoped by NSA that open source software developers will ac-
company their software with policies that ensure that their applications meet
appropriate security goals.

To provide for policy enforcement in SE Linux, the Flask architecture [10]
is superimposed upon the Linux kernel. In this architecture, a security server
determines from the de�nition of a policy whether any given request by a process
for a particular permission to a particular object may be granted. A policy
described in the SE Linux policy language is compiled by a program checkpolicy

into an internal form understandable to the security server.
With respect to policy correctness, there are at least three important ques-

tions to ask about any individual policy:

� Is the policy compiled correctly? I.e., is its internal form equivalent to its
de�nition?

� Is the policy correctly enforced by the security server?

� Does the policy, as deduced from the semantics of its de�nition in the policy
language, meet a given set of security goals?

Answering the �rst two questions requires understanding the internal form of
a policy and veri�cation of the security server code. The project described in
this paper addresses the third question, which one might a priori expect to be
independent of details of the actual SE Linux code.

Any policy de�ned in the SE Linux policy language will be intended to
accomplish a set of security goals. The documentation accompanying the SE
Linux release describes a set of eight security goals for the example policy in the
release [9]. However, it is not immediately obvious that a given policy achieves
particular security goals. Because the policy language is designed to specify
(mandatory) access control at a detailed level, the analysis required to determine
whether the goals are achieved is too complex to do by inspection. To perform
such an analysis, tool support is clearly required. To encourage open source
developers to analyze the policies they de�ne with respect to their security goals,
this tool support needs to be usable by software developers.

The project described in this paper has two goals. Ultimately, the goal is
to produce a methodology and associated tool support permitting developers to
analyze their policies. As intermediate goal is to �rst demonstrate this methodol-
ogy and tool support on the example security policy accompanying the SE Linux
release. The tool support is to be based on TAME, a specialized interface to
PVS that provides user-friendly support for specifying and proving properties of
automata models.
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One essential requirement that must be met before either of our above goals
can be achieved is to have a precise semantics for the SE Linux policy language;
without such a semantics, it is impossible to prove any properties of a policy
de�ned in the language. Because the description provided in the SE Linux doc-
umentation is very informal, relying heavily on examples, the initial phase of the
project has been to formalize this semantics.

The policy de�nition accompanying the SE Linux release is extremely com-
plex, covering over 80 pages, even with macros to allow individual rules to cover
many cases. Because our intermediate goal|demonstrating the methodology and
tool on the example policy|is essentially a feasibility study, we have chosen a
subset of the full example policy on which to perform the initial demonstration.

This paper is organized as follows. Section 2 describes our overall approach,
which has six phases. The next six sections describe our progress in terms of
these six phases towards developing a general methodology and applying it to
an example. In particular: Section 3 describes our formalization of the policy
language semantics; Section 4 describes our general approach to representing a
security policy with a state machine; Section 5 discusses the representation of se-
curity goals as state machine properties in general, and describes how the security
goals stated in [9] can be represented as state machine properties; Section 6 de-
scribes the policy subset we have chosen for our initial study; Section 7 describes
how TAME can be used to check properties of a security policy; and Section 8
describes our plans for technology transfer. Finally, Section 9 discusses some of
the di�culties and questions that have arisen in developing our state machine
model, and Section 10 presents our conclusions.

2. Approach

Our approach to developing a methodology with tool support that can be
used by developers in the open source software community has six stages:

1. Develop a precise formal description of the policy language and its semantics.

2. Develop a general state machine model for the system to which a security
policy is to be applied.

3. Develop a method by which to express policy goals as properties of the state
machine model.

4. Choose a small subset of the policy accompanying the SE Linux release that
will serve as an initial example application for our methodology.

5. Use TAME to analyze the reduced model with respect to the policy goals for
the SE Linux release.

6. Technology transfer: Document the methodology and adapt TAME appro-
priately to make use of the methodology and TAME feasible for open source
developers without deep knowledge of mechanical theorem proving.

Our progress in following this approach is detailed below.
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3. The Policy Language

The SE Linux security policy language is described in [8], part of the doc-
umentation accompanying the SE Linux release. The language description in
[8] is somewhat informal, and is mostly given by example. Some of the language
constructs are not fully de�ned in [8]; however, most of the constructs used in the
example policy accompanying the release have reasonably complete descriptions.

This section summarizes the language constructs mentioned in [8] that re-
late to TE and RBAC policies, and gives our understanding of their purposes.
Our attempt at a formal description of the syntax and semantics of the various
constructs is given in Appendix A.

The SE Linux policy language has four kinds of statements: declarations,
rules, constraints, and assertions. Declarations include role declarations and type
declarations. Rules include access vector rules, which govern decisions made by
the security server about access requests, and transition rules, which govern pos-
sible role changes of an object and type-enforcement type assignments to newly
created objects. Constraints constrain the manner in which various access permis-
sions can be applied to various objects. Assertions are statements about whether
or not certain kinds of access permissions are ever allowed by the policy. While
the declarations, rules, and constraints are enforced by the security server at run
time, the assertions are checked by the policy compiler checkpolicy at policy
compile time. Thus, assuming checkpolicy works correctly, the assertions can
be used as simple properties of the security policy that are available as lemmas
in the proof of more complex properties (such as invariants capturing high level
security goals).

Each language statement consists of a keyword (e.g., \allow" for the most
typical access vector rules) followed by arguments that are expressed by using
other language elements such as type names, role names, object classes, attributes,
and permissions. The particular sets of representatives of these elements can
depend on the particular policy being de�ned (and the particular Linux con�gu-
ration for which it is being de�ned|e.g., the particular kernel modules present).
The sets tend to be quite large. In the example policy with the SE Linux release,
there are 3 role names, 28 object classes, 22 attributes, 115 permissions, and 253
type names of which 21 are parameterized|meaning there is an unbounded num-
ber of type names. The size problem is handled by the de�nition of macros for
sets of permissions, sets of attributes, sets of object classes, etc. These macros
can be used in place of individual arguments in the syntax for the statements
described in Appendix A.

4. A General State Machine Model

A state machine model can be speci�ed by de�ning 1) a set of states, 2) an
initial state (or set of initial states), and 3) a set of possible state transitions.
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Modeling the workings of an SE Linux security policy requires an abstract state
machine that captures the security-relevant features of the system subject to the
policy.

Modeling states. One role of the security policy is to de�ne the mandatory access
control policy of the system by determining the kinds of access which the subjects
(i.e., processes) of the system may have to the system objects (e.g., �le objects,
process objects, etc.). In SE Linux, each object has an associated security context
consisting of a set of features including a (TE) type, a user, a role, and if relevant,
a multi-level security level. Since access control decisions are based on security
contexts, a state in the state machine model must include representations of the
objects of the system, and include a security context in the representation of each
object. This information can be kept in a state variable objects.

Typical security goals involving changes to an object only consider whether
or not the object could have been changed. To model changes to �le objects, we
associate an abstract \content" in the form of a natural number with each object,
which starts at 0 and is incremented each time a change could have happened.

The security policy may contain information on when to audit certain re-
quests for permissions. In this case, the state must keep track of audit informa-
tion. Conceptually, this information is kept in a special (�le) object. However,
we expect to model audit information as a separate state variable audit in order
to simplify both the notion of \content" of a �le object and the retrieval of audit
information from the state. The exact representation of this information may
change if a description is provided of how auditing in SE Linux is expected to be
used; there currently seems to be no such description.

Modeling the initial state. The initial state chosen for the state machine model
will vary with the subset of the SE Linux security policy that is being modeled.
In our initial subset (see Section 6), we expect to model the system after it
has been initialized and ready for a user to log in. For this subset, the initial
state will include among its objects the login daemon, standard system software
executables, etc. To model how the security policy controls system initialization,
a di�erent, more primitive initial state would be needed.

Modeling state transitions. Security contexts can be a�ected by transitions such
as type transitions and role transitions. A further role of the security policy be-
yond determining access control decisions is to de�ne the permissible transitions.
Therefore, the state transitions in the state machine model must reect both
access control decisions and possible modi�cations to security contexts.

In the Flask architecture (see [10]), transitions of the system are triggered
by actions called \user requests". These requests are made to the \object man-
ager", which consults the security server before handling them. It seems clear
that the transitions in the state machine model must correspond to the user re-
quests. However, the term \user request" can be used to describe requests at
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various levels. For example, a shell level command might be a user request; at
a lower level, so might a system call; at an even lower level, so might a request
to be granted a permission. A combination of criteria led us to decide that the
system call is the best choice of user request to associated with an individual
state transition in our model. First, transitions should have an easily described
e�ect on the state of our model. Second, there should be a relatively small and
well-de�ned set of distinct requests. Individual permission checks do not meet
the �rst criterion, and neither permission checks nor shell level commands meet
the second.

The documentation of the security policy in the SE Linux release provides
details as to the permission checks needed for individual system calls, providing a
natural way to tie the access decisions de�ned by the security policy to the system
calls. One complication, however, is that when SE Linux processes a system call
and some necessary permission is denied, any remaining permissions checks are
skipped. Exactly which ones are skipped can only be determined from looking
at the kernel code [7]. To keep the abstract model of the system as simple as
possible, we instead perform the full set of permission checks. This can make the
model diverge from the actual system if any permission check with a side e�ect
is done in the model when it would not be done in the system. However, since
the only side e�ects of permission checks appear to be accumulation of audit
information, and since this audit information does not play any obvious role in
achieving the security goals in [9], we consider this divergence to be normally
harmless.

We have written pseudo-code to describe the arguments to and e�ects of
those system calls that are relevant to the policy and system subset (described
below in Section 6) that we have chosen for our initial example. Details of our
method for selecting the subset of system calls and for arriving at our pseudo-code
representations for these system calls are provided in Appendix C.

Determining the e�ects of the various system calls is straightforward from
the Linux documentation. However, the e�ect of an automaton action based
on a system call depends on whether the necessary permissions are granted.
Requiring that all the needed permissions be granted places a precondition on the
action. The complete transition function of the automaton requires computation
of these preconditions based on the security policy speci�cation. Because of
the complexity of this speci�cation, great care must be taken in organizing this
computation for e�ciency.

5. Expressing Security Goals as State Machine Properties

It is preferable, when possible, to capture policy goals as invariant prop-
erties of the state machine. These invariant properties have two avors: state
invariants (properties of all reachable states) and transition invariants (proper-
ties of the pairs of states in all reachable transitions). The reason for preferring
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invariant properties is that they are simpler to establish with a theorem prover
than other types of properties. As will be discussed below, many of the security
goals in [9] for the policy in the SE Linux release can be expressed in terms of
state or transition invariants. However, no cut-and-dried general methodology for
expressing security goals as state machine properties can be given. The best one
can hope for is some general guidelines and a set of examples to use as models.

Policy goals formulated as state machine properties must be expressed in
terms of the state variables of the state machine used to model the workings
of the policy. Thus, it is necessary to develop the state machine model for the
policy before formalizing its security goals. The advantage to formalizing the
goals is that it makes the intent of the goals unambiguous. For example, one of
the goals for the SE Linux release is to \protect the integrity of the kernel". A
precise formal version of this goal would make clear what is meant by integrity,
and would clarify such issues as whether anything may change the kernel (e.g.,
whether a new module can be added).

The eight high level security goals described in [9] for the policy in the SE
Linus release are as follows:

1. Control various forms of raw access to data.

2. Protect the integrity of the kernel.

3. Protect the integrity of the system software, system con�guration informa-
tion, and system logs (i.e., only the system administrator can modify the
system software).

4. Con�ne potential damage from exploitation of a aw in a process that requires
privileges.

5. Protect privileged processes from executing malicious code.

6. Protect the administrator role and domain from being entered without user
authentication.

7. Prevent ordinary user processes from interfering with system processes or
administrator processes.

8. Protect users and administrators from the exploitation of aws in the
netscape browser by malicious mobile code.

(Except for some paraphrasing in items 3 and 4 above, this list is quoted verbatim
from [9].) Below, we give some examples of how many of these goals can be
expressed in terms of state invariants or transition invariants:

� Goal 1 can be expressed in terms of state invariants of the form \In any
state, only subjects having security context i can have permission j to objects
having security context k", where i, j, and k need to be speci�ed by the policy
designer. These invariants may need to be supplemented by invariants of the
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form \Subject <name> can never have security context i" or \A subject with
initial security context c can never acquire security context i". The latter can
be expressed as a state invariant if object histories are maintained as part of
the current value of the object in the state machine model.

� Goals 2 and 3 can both be expressed in terms of transition invariants of the
form \If an action changes the content of an object with security context i,
then the action must have resulted from a successful request of a subject with
security context j". Goal 4 can be expressed in terms of similar transition
invariants, of the form \If an action changes the content of an object with
security context i, then the action must have resulted from a successful request
of a subject with security context j1, ::: , or jn", where the security contexts i
covers the objects which one does not want a subject with security context k
62 fj1, ::: , jng to be able to a�ect.

� Goal 6 can be expressed as the transition invariant \If an action results in
the subject entering a security context corresponding to an administrator role
or domain, then the subject must have had its authentication value set in
the prestate of the transition". This requires that process objects (potential
subjects) have as part of their representation in the model an associated value
indicating their authentication status.

� Goal 7 can be expressed in terms of transition invariants of the form \If an
action changes the state of a system or administrator process object, then it
is not the result of a request by an ordinary user process object".

Note that it generally takes several invariants to express a security goal.
The invariants sketched above clearly cannot be stated more precisely until the
variables and actions in the state machine model have been speci�ed. Moreover,
the ability to capture some of the goals, e.g., Goals 6 and 7, in terms of the
abstract state machine model relies on the model being su�ciently detailed. In
particular, the invariants for Goal 7 require a reasonable abstract representation
of the state of a process object to be included in the model, beyond the integer to
represent content that is su�cient to capture changes in the state of a �le object.

Because the goals are stated in such vague terms, precise details such as the
values to assign to the security context parameters cannot really be determined.
Such details would have to be provided by the designers of the security policy,
who no doubt have a more precise notion of the intentions of the various goals.

6. Choosing an Initial Policy Subset

To demonstrate the feasibility of our approach, we model a small but useful
subset of the example policy which accompanies the SE Linux release. Our chosen
subset is the portion of the original system necessary for a single user to operate on
a minimal level. We assume that the system has already been booted and properly
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initialized. The subset includes the procedures for login and password changing
as well as the usual operations on �les and directories. Programs not necessary
to the basic functioning of the operating system, such as the X server, the gnome
pty helper, mail, printing, mount, logrotate, at, and cron, are eliminated. Kernel
module utilities and System V inter-process communication are also excluded
from the subset. The SE Linux classes associated with Linux capabilities and
security aware applications have also been eliminated. Elimination of a particular
program was done by removing the type declarations associated with the program
and all references to those types in rules. Particular classes were removed by
eliminating all rules that refer to those classes.

The subset also abstracts away some of the detail related to hardware in-
teraction. Programs such as the card manager, the advanced power management
system, and the console mouse server are exluded from the subset. The hardware
devices, which are �les in the system, are retained in the subset because some of
them are needed for the ioctl system calls.

All networking capabilities are excluded from the subset, as are the net-
work communications programs rlogin, rpc, rsh, ssh, and tcp. All sockets are
excluded, except for Unix datagram sockets, which are used for inter-process
communication. Also excluded are Netscape, NFS, and programs which help
facilitate networking such as ypbind, ifcon�g, inetd, and NIS.

The set of system calls used to form the set of transitions in the model (see
Appendix C) is used to further reduce the example policy. These system calls
do not require all of the possible permissions for the classes of objects remaining
in the system. Thus, all rules relating to permissions unused by the system calls
are eliminated.

The reduced system is signi�cantly smaller than the original example policy,
as shown by the statistics below.

SE Linux Reduced
Example Policy System Policy

Number of TE �les 53 23
Number of allow rules 708 234
Number of types 253 96
Number of object classes 28 12
Number of permissions 115 34

For a complete description of what was retained in the reduced policy see Ap-
pendix B.

The remaining subset is still large enough to allow the formulation of prop-
erties related to most of the security goals from [9] in Section 5. The reduced
system still retains the various hardware devices and processes that need to access
them, allowing properties related to Goal 1 to be analyzed. Though we assume
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the system is booted, we retain the �les containing the code for booting and can
thus check for access to these �les. We also retain rules involving transitions to
the type of the initialization process, allowing us to analyze whether there are
any processes that can improperly transition to the initialization process. Both of
these inclusions make it possible to formulate properties related to Goal 2. Sys-
tem software, con�guration information, and log �les remain in the subsystem, as
do some programs that need access to those various types of �les, allowing Goal 3
to be studied. Properties related to Goals 4 and 5 can be formulated because
the reduced system retains the login process, which is privileged. The reduced
system contains the administrator role and domain, as well as the login and new-
role programs, which are necessary for Goal 6 to be analyzed. Properties related
to Goal 7 can be formulated because there are user, system, and administrator
processes remaining in the system.

After the reduced policy has been analyzed to see if it satis�es the security
goals, eliminated programs could be reintroduced and the resulting policy ana-
lyzed. Some portions of the example policy, such as that associated with booting
and initializing the system, could be independently analyzed.

7. Analyzing the State Machine Model of a Policy with TAME

TAME [4,1] is an interface to PVS designed to simplify the speci�cation of
automata models and proofs of automata properties, especially invariant prop-
erties. To specify an automaton, the user �lls in the TAME template, providing
the information shown in Figure 1. Auxiliary de�nitions are also usually needed
to support the information the user provides in the template. For example, if
there are state variables whose types are more complex than simply boolean or

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Template Part User Fills In Remarksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

actions Declarations of actions is a PVS datatype
non-time-passage actionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

MMTstates Type of the “basic state” Usually a record type
representing the state variablesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

OKstate? An arbitrary state predicate Default is true
restricting the set of statesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

enabled_specific Preconditions for all the enabled_specific(a,s) =
non-time-passage actions specific precondition of action a

in state siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
trans Effects of all the actions trans(a,s) = state reached

from state s by action aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
start State predicate defining the Preferred forms: s = ... or

initial states s = (# basic := basic(s)
WITH ...

... #)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
const_facts Predicate describing relations Default is true

assumed among the constantsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Figure 1. Information needed to �ll in the TAME template.
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numeric, these types must be de�ned in type declarations. The major state vari-
able objects in our general model for SE Linux describes a set of objects with
associated characteristics. The most convenient way to represent objects in PVS
is as a function that takes a unique object identi�er (e.g., a unique path name)
and returns a record of its characteristics (e.g., user, TE type, role, MLS level,
abstract content, etc.). This very complex type for objects requires several sup-
porting type declarations. Other auxiliary de�nitions that may be needed in a
given speci�cation are function de�nitions and axioms. Auxiliary function de�-
nitions are especially useful in \layering" the de�nition of the transition function
trans and the precondition function enabled specific so that these de�nitions
can be expanded only to the extent needed in reasoning about individual state
transitions.

TAME also provides a standard set of steps for reasoning about invariant
properties of automata. The most commonly used steps are shown in Figure 2.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TAME Strategy Purposeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

AUTO_INDUCT Set up a structural induction proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DIRECT_PROOF Set up a non-induction proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
APPLY_SPECIFIC_PRECOND Introduce the specified preconditioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
APPLY_IND_HYP Apply the inductive hypothesisiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
APPLY_INV_LEMMA Apply an invariant lemmaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
APPLY_LEMMA Apply any general lemmaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SUPPOSE Do a case split and label the casesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TRY_SIMP Try to complete the proof automaticallyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Figure 2. Most commonly needed TAME proof steps in invariant proofs.

The TAME proof steps have proved su�cient to prove invariant properties in
a wide set of applications; see, for example, [3,4,2]. In addition to the proof
steps shown in Figure 2, an automatic proof strategy based on these steps has
been developed for proving invariant properties of automata speci�ed in the SCR
toolset [5]. This automatic strategy has been used to prove properties of a mod-
erate sized SCR example [6]. An associated analysis strategy helped in �nding a
counterexample to a property that was not an invariant. The layered nature of
the representation of the transition function of the TAME representation of an
SCR speci�cation was used to advantage in designing the automatic proof strat-
egy for SCR speci�ciations for e�ciency. There is hope that analogous layering in
the TAME representation of SE Linux models can be used to similar advantage.

The TAME step APPLY INV LEMMA in Figure 2 is used for applying
other invariant lemmas in the course of the proof of the current invariant lemma.
It is typical for desired system invariants to require auxiliary invariants in their
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proofs. Experience has shown that for SCR automata, many of the needed auxil-
iary invariants are among the invariants automatically generated by the invariant
generation algorithm in the SCR toolset. The automatic SCR proof strategy uses
these automatically generated invariants when they are needed. In principle, it is
not necessary to establish the automatically generated invariants using TAME;
they can instead be included as axioms. As noted in Section 3, we hypothesize
that the \assertions" in an SE Linux policy description can be used to support
proofs of SE Linux policy invariants in analogy to the way the automatically
generated invariants support proofs of more complex invariants in SCR.

8. Plans for Technology Transfer

Specifying the system model in TAME for a security policy de�ned in the
SE Linux policy language requires extracting certain information from the policy
de�nition and formulating this information appropriately for use in �lling out
the TAME template. The example policy subset that we are using as a feasi-
bility study provides the basis for determining the information that needs to be
extracted and how it will be used in TAME. Enabling practitioners such as open
source software developers to create TAME models for their security policies will
initially be done by means of documentation illustrated by our example. In the
farther future it would be desirable to create a policy-to-TAME compiler.

To make TAME itself more accessible for developers, we expect to adapt
both the speci�cation and the proof support of TAME for SE Linux security
policies. Because many aspects of TAME models of policies|such as the state
variable objects and much of its type structure|will be common to all models,
the TAME template can be re�ned into a specialized version for policy models
that includes template features for these common parts. One common feature,
the overall structure of the representation of the access control decisions of the
security policy, can be used to advantage in designing e�cient specialized proof
steps for use in proving security policy properties. As discussed in Section 7,
there is hope that a strategy that can prove many invariant properties automat-
ically can be designed for SE Linux security policies in analogy to the automatic
strategy for SCR speci�cations. If so, this would greatly increase the accessibility
of TAME to software developers with no experience of theorem proving.

9. Discussion: Problems to Be Solved

To develop a model for the example SE Linux security policy (or a subset),
several problems resulting from the size and complexity of the example policy
must be solved. The �rst problem is to decide just what state information needs
to be represented in the model. As noted in Section 5, the answer to this depends
on the properties one wishes to prove of the policy.
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The next problem is to �nd an appropriate representation of the mechanism
used by the the security server to make access control decisions. Ideally, a layered
representation could be found that would allow decisions to be made e�ciently
based on least information. The layering could then be used in organizing the
data structure used by the transition function in the state machine model.

The example policy is expressed relatively compactly by means of macros.
When these macros are expanded, the full example policy expands to several tens
of thousands of allow rules. It is clearly necessary to imitate the macros used in
the policy de�nition when creating the state machine model of the policy. Doing
so may provide part of the answer to �nding an appropriate layered representation
for the access control decisions.

Already mentioned in Section 4 is the question of how to represent the e�ect
on the state of user requests (system calls) whose associated permissions are only
partly granted, when asking for a permission may lead to audit information being
kept. Modeling this situation precisely can only be done by referring to the SE
Linux source code, a thing to be avoided. Our proposed solution is to settle for
a model that is not guaranteed to be precise about audit information.

10. Conclusions

The major di�culties associated with undertaking to prove properties of an
SE Linux security policy as invariants of an appropriate state machine model
arise from the sheer size of the policy description, which results from its low-level
nature. Experience with applying mechanized support to the analysis of even
relatively small systems has shown that speci�cation errors are almost certain
to be found even in system speci�cations that have been carefully scrutinized by
many people prior to the mechanized analysis. Thus, one can expect that such
an intricate policy as the one in the SE Linux release will leave some unexpected
loopholes.

A more feasible approach to producing a policy known to have a desired set of
high-level properties is to obtain it by compiling a high-level policy speci�cation
that is more amenable to analysis. A high-level policy de�nition language is
de�nitely desirable [7].

In the absence of such a high-level language, it can be useful to model subsets
of the full policy to search for loopholes. Provided these subsets include all of the
policy relevant to some subset of Linux, any loophole found by this means will
be a loophole in the full policy.
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Appendix

A. Semantics of the SE Linux Policy Language

Language statements in the SE Linux policy language come in four avors:
declarations, rules, constraints, and assertions. Assertions are checked against
the others at policy compile time. The others are enforced by the SE Linux
kernel. The statements described below are not the full set mentioned in the SE
Linux domumentation, but do at least cover those actually found in the TE and
RBAC policy descriptions for the example policy in the SE Linux release. The
\Remarks" section in the description for a particular statement refer either to
the uses of that statement in the example policy or to certain �les of the policy
descriptions. Caveat: the exact �les and �le contents in the policy description
are likely to change over time. Our references are to the versions we captured on
April 12, 2001.

A.1. Declarations

role declarations

Syntax: role <role-name> types <types>

Examples:

role system_r types initial_boot_t;

Remarks: There is only one example of role in the TE policy, in policy/init.te.

Most role declarations are in the RBAC policy in policy/rbac.

Semantics: Declares a new role <role-name> and specifies the set of types

<types> that may be "entered" by a process in role <role-name>.

Question: May a process "enter" a type by type_change? By

type_transition? Both? (I.e., just what "enter" means is

not clear.)

type declarations

Syntax: type <typename> <attributes>

Examples:

type initial_boot_t, domain, privuser, privrole, privowner;

Remarks: There is supposedly an optional aliases argument, but we have

found no uses of it.

There are 253 type declarations in the TE policy, several of

them parameterized.

Semantics: Declares a new type <typename> which has the attributes

listed in <attributes>.
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A.2. Rules

According to the language description provided in [8], there are four kinds
of access vector rules, namely: allow, auditallow, auditdeny, and notify. Only
two of these, allow and auditdeny, are used in the TE policy. Quoting from [8]:

These [four kinds of] rules de�ne the corresponding access vectors returned by
security compute av. If no rule is speci�ed, then no permissions are returned
in allowed, auditallow, or notify, and all permissions are returned in auditdeny.
All permissions are always returned in the decided access vector, since the TE
policy does not defer the computation of any permissions. ... Each access
vector rule has a source type �eld, a target type �eld, a class �eld, and a
permissions �eld.

Thus, in particular, any permission not explicitly allowed is denied (and audited).
Most of the rules we describe below can be used in more compact form

by using sets of types, objects, and permissions as arguments where a single
type, object, or permission is speci�ed below. The interpretation of rules stated
with such \plurals" is the same as the set of rules obtained by choosing each
possible combination of \singular" arguments. An exception is the last <type>
argument in a type transition or type change or type member rule, which must
name a single type (because it represents the necessarily unique default type to
be assigned to a new or transformed object. There are several ways to represent
sets: e.g., one can use 1) a comma-separated list in curly braces, 2) an attribute
name to represent the set of types with that attribute, or 3) � in front of an
individual or a set to represent its complement.

allow rules

Syntax: allow <type1> <type2>:<object class> <permission>

Examples:

allow sysadm_t file_t:dir_file_class_set *;

allow $1 netmsg_type:tcp_socket { connectto acceptfrom };

Remarks: There are 708 allow rules, most of them parameterized. The

parameter $1 in the example rule above can be any of the many

types to which the can_network macro is applied.

Semantics: Grant the requested permission. Specifically, grant the

permission <permission> to any subject of "source type" <type1>

with respect to an object of "target type" <type2> and "class"

<object class>.

Example 1: allow domain init_t:process sigchld;

Explanation given: This rule grants every domain the ability to

send a SIGCHLD signal to init, so that init can reap every process.
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Example 2: allow syslogd_t device_t:dir {read getattr access

search add_name

remove_name}

Explanation given: This rule grants syslogd the ability to access

/dev to replace /dev/log.

Example 3: allow syslogd_t devlog_t:sock_file create;

Explanation given: This rule grants syslogd the ability to create

the /dev/log socket file.

role allow rules

Syntax: allow <role1> <role2>

Examples:

allow system_r user_r;

allow system_r sysadm_r;

allow user_r sysadm_r;

allow sysadm_r user_r;

Remarks: The above are the only (role) allow rules in the RBAC policy.

Semantics: Allow an object with role <role1> to transition to role <role2>.

auditdeny rules

Syntax: auditdeny <type1> <type2>:<object class> <permission>

Examples:

auditdeny passwd_t initrc_var_run_t:file ~write;

auditdeny system_crond_t initrc_var_run_t:file ~write;

auditdeny local_login_t fixed_disk_device_t:blk_file ~{ getattr setattr };

auditdeny local_login_t removable_device_t:blk_file ~{ getattr setattr };

auditdeny local_login_t device_t:file_class_set ~{ getattr setattr };

auditdeny local_login_t misc_device_t:file_class_set ~{ getattr setattr };

auditdeny rshd_t etc_auth_t:dir ~search;

auditdeny rshd_t etc_auth_t:file ~{read getattr};

auditdeny sendmail_t initrc_var_run_t:file ~write;

auditdeny $1_t domain:dir ~r_dir_perms;

auditdeny $1_t domain:notdevfile_class_set ~r_file_perms;

auditdeny $1_t initrc_var_run_t:file ~write;

Remarks: The above are the only uses of auditdeny in the TE policy. The only

values used for $1 above are "user", "sysadm", and "polyadm".

Semantics: If the requested permission is denied, keep audit information

about it. Specifically, record any denial of the permission

<permission> to any subject of "source type" <type1> with with

respect to any object of "target type" <type2> and "class"

<object class>.
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Also, *do not* keep audit information for <type1>, <type2>, and

<object class> in regard to any other permission, unless there is

an explicit auditdeny rule for that permission.

type change rules

Syntax: type_change <type1> <type2>:<object class> <type3>

Examples:

type_change sysadm_t user_tty_device_t:chr_file sysadm_tty_device_t;

type_change user_t sysadm_tty_device_t:chr_file user_tty_device_t;

type_change sysadm_t user_devpts_t:chr_file sysadm_devpts_t;

type_change user_t sysadm_devpts_t:chr_file user_devpts_t;

type_change user_t sshd_devpts_t:chr_file user_devpts_t;

type_change $1_t tty_device_t:chr_file $1_tty_device_t;

type_change $1_t rlogind_devpts_t:chr_file $1_devpts_t;

Remarks: The above are the only uses of type_change in the TE policy.

$1 is the "domain_prefix" argument to the macro user_domain.

The macro user_domain is applied only to the arguments "user",

"sysadm", and "polyadm".

Semantics: For any object of type <type2> and class <object class>, relabel

the object with the type <type3> when a subject of type <type1>

accesses the object.

The "accesses" part is just a guess; to see what this

really does, one presumably has to look at the code for

the security server.

type member rules

Syntax: type_member <type1> <type2>:<object class> <type3>

Examples:

type_member polyadm_t poly_t:dir poly_t;

type_member $1_t poly_t:dir $1_home_t;

Remarks: The above are the only two uses of type_member in the TE policy.

$1 is the "domain_prefix" argument to the macro user_domain.

The macro user_domain is applied only to the arguments "user",

"sysadm", and "polyadm".

Semantics: ??? (Not described.)
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type transition rules

Syntax: type_member <type1> <type2>:<object class> <type3>

Examples:

type_transition $1 $2:process $3;

type_transition $1 $2:dir $3;

type_transition $1 $2:notdevfile_class_set $3;

type_transition $1_t devpts_t:chr_file $1_devpts_t;

type_transition $1_t devpts_t:chr_file $2_devpts_t;

type_transition cardmgr_t tmp_t:chr_file cardmgr_dev_t;

type_transition cardmgr_t device_t:lnk_file cardmgr_lnk_t;

Remarks: The above are the only uses of type_transition in the TE policy.

$1, $2, and $3 in the first example are the arguments to the macro

domain_auto_trans; in the second and third examples they are the

arguments to the macro file_type_auto_trans. Both of these macros

are applied to many different sets of arguments in the policy.

$1 in the fourth example is the domain_prefix argument to the

can_create_pty macro, which is applied only to rlogind, sshd,

and to the argument of the user_domain macro (which is only

applied to "user", "sysadm", and "polyadm").

$1 and $2 in the fifth example are the domain_prefix and

other_domain arguments of the can_create_other_pty macro, which

is used only within the gph_domain macro, applied to $1_gph and

$1, where $1 is the argument to the gph_domain macro. The

gph_domain macro, in turn, is applied only to the argument of

the user_domain macro, which is only applied to "user", "sysadm",

and "polyadm".

Semantics: If <object class> is "process", then the default type of any

process object created from an executable of type <type2> by

an object of <type1> will be <type3> rather than <type2>.

If <object class> is a file object class, then the default type

assigned to an object of class <object class> created in a

directory of type <type2> by an object of type <type1> will be

<type3> rather than <type2>.
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role transition rules

Syntax: role_transition <role1> <type> <role2>

Examples:

role_transition $1 $2 $3

Remarks: The above example, which occurs in the definition of the macro

role_auto_trans, is the only use of role_transition in the RBAC

policy; because role_auto_trans is not used at all, neither is

role_transition.

Semantics: The default role of a process created from an executable of

type <type> by forking a process of role <role1> is <role2>

rather than <role1>.

A.3. Constraints

constrain statements

Syntax: constrain <object class> <permission> <expression>

Examples: constrain process transition ( u1 == u2 or t1 == privuser );

constrain process transition ( r1 == r2 or t1 == privrole );

constrain dir_file_class_set { create relabelto relabelfrom }

( u1 == u2 or t1 == privowner );

constrain socket_class_set { create relabelto relabelfrom }

( u1 == u2 or t1 == privowner );

Remarks: The file "constraints" in the "policy" directory gives the

following description of the syntax of constraints:

# constrain class_set perm_set expression ;

#

# expression : ( expression )

# | not expression

# | expression and expression

# | expression or expression

# | u1 op u2

# | r1 role_op r2

# | t1 op t2

# | u1 op names

# | u2 op names

# | r1 op names

# | r2 op names

# | t1 op names

# | t2 op names
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#

# op : == | !=

# role_op : == | != | eq | dom | domby | incomp

#

# names : name | { name_list }

# name_list : name | name_list name#

Semantics: The semantics from the file "constraints" for the first two

examples is given as:

# Restrict the ability to transition to other users

# or roles to a few privileged types.

The semantics for the second two examples is given as:

# Restrict the ability to label objects with other

# user identities to a few privileged types.

The most probable interpretation is: A subject may apply the

permission <permission> to an object of class <object class>

only under the constraints denoted by the expression <expression>.

In any expression, u1, r1, and t1 refer to the user, role, and

type associated with the object before the permission is used,

and u2, r2, and t2 refer to the user, role, and type that would

be associated with the object after the permission were used.

The symbol == can be used to denote membership in a set of types

(e.g., possession of an attribute such as privuser).

A.4. Assertions

neverallow statements

Syntax: neverallow <types> <object> <permissions>

Examples:

neverallow ~{ kmod_t insmod_t rmmod_t ifconfig_t } self:capability sys_module;

neverallow ~klogd_t proc_kmsg_t:file ~stat_file_perms;

Remarks: Found only in policy/assert.te. The validity of these assertions

is checked by the program "checkpolicy".

Semantics: Asserts that no permission in <permissions> is ever given to any

entity of a type in <types> with respect to <object>.
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B. The Reduced Policy

Roles. All three roles, system r, sysadm r, and user r, are retained.

Types. The following types are retained in the reduced system. All other types
are eliminated, along with any rules referring to those types.

$1 devpts t klogd t shell exec t
$1 home t klogd tmp t shlib t
$1 su t klogd var run t src t
$1 tmp t ld so t su exec t
$1 tty device t lib t sulogin exec t
bin t local login t sysadm t
boot runtime t local login tmp t sysctl dev t
boot t login exec t sysctl fs t
chkpwd exec t lost found t sysctl kernel t
clock device t ls exec t sysctl net t
console device t memory device t sysctl t
device t misc device t sysctl vm t
devlog t newrole exec t syslogd exec t
devpts t newrole t syslogd t
devtty t no access t syslogd tmp t
etc aliases t null device t syslogd var run t
etc auth t passwd exec t tmp t
etc runtime t passwd t tty device t
etc t policy con�g t unlabeled t
�le labels t policy src t user t
�le t poly t usr t
�xed disk device t polyadm t utempter exec t
fs t proc kcore t utempter t
fsadm exec t proc kmsg t var lib t
fsadm t proc t var lock t
fsadm tmp t psaux t var log t
getty exec t ptmx t var run t
getty t random device t var spool t
getty tmp t removable device t var t
initrc var run t root t var yp t
kernel t sbin t wtmp t
klogd exec t security t zero device t

Classes. Classes retained in the subset are dir, fd, �lesystem, process,
unix dgram socket, �le, blk �le, chr �le, �fo �le, lnk �le, pipe, and
sock �le.
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Permissions. The following are the permissions retained for each class. The
permissions listed for �le are also the permissions retained for classes blk �le,
chr �le, �fo �le, lnk �le, pipe, and sock �le.

class permissions
dir: add name read remove name reparent rmdir search
fd: create getattr inherit setattr
�le: access append create execute getattr ioctl link lock

poll read rename setattr unlink write
�lesystem: associate
process: entrypoint execute fork ptrace sigchld sigkill signal

sigstop transition
unix dgram socket: connect create read recvfrom recv msg sendto

send msg write

Attributes. The attributes netif type, netmsg type, node type, port type,
and socket type are eliminated from the subset because all of the types having
these attributes are not included in the subset.
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C. System Calls

The initial TAME model of SE Linux is an abstract representation of a
subset of SE Linux that omits certain system features such as those related to
�le system mounting, network operations, many I/O operations, and most kinds
of sockets. The TAME model will represent this subset as a state machine with
a set of actions representing user requests. The most logical choice for the level
of these requests is the system call level, since the system calls are limited in
number and can be used to represent the most security-relevant actions of system
processes. Each system call results in a set of permissions being checked, directly
or indirectly, by the security server, and will succeed only if all the permissions
are granted.

This appendix contains pseudo-code descriptions of the system calls that will
be modeled in the initial TAME model of SE Linux. The pseudo-code descriptions
give details of the permissions asked for and of the e�ects of the system call if it
succeeds. The system calls were selected by executing some simple user scenarios
in Linux and determining which system calls resulted. The scenarios included:

1. log in; execute the passwd program; log out

2. log in; create a �le; write something in the �le; log out

3. log in; create & write a �le; make the �le executable; run the executable; log
out

Certain system calls were eliminated from the results as either being prob-
ably irrelevant to our reduced model or to the TE policy:

1. Calls not covered or not clearly described by reference [8] (e.g. alarm, setuid,
setrlimit).

2. File systems manipulation (e.g. mount).

3. System calls for security-aware applications.

4. Network system calls.

5. System V IPC calls (e.g. semaphores, shared memory).

6. Calls involving capabilities.

The system calls described in Section C.3 below that are marked with a
bullet (�) are those that remained after the above selection process, and are
intended to be de�nitely included in our initial example policy model. The re-
maining system calls described in Section C.3 were selected to include the most
likely additional system calls from which we will choose any additions to our
initial model.

Once the set of system calls to be modeled (or possibly modeled) was se-
lected, a pseudo-code description of each was constructed using information from
[8]. The information relevant to an individual system call was somewhat scat-
tered in [8]; much of the information appears in tables, but the information in a
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table is often incomplete. Sometimes, more than one table had to be consulted,
and in most cases, text in the body of [8] provided additional detail. Other details
of system calls were obtained directly from the Linux documentation.

In constructing the pseudo-code descriptions, some of the system call de-
tails were omitted|e.g., arguments that are irrelevant to the initial subset being
modeled. In addition, the argument lists have sometimes been modi�ed to break
down a complex argument into its components, and to include a slot or slots for
values being returned. In the individual system call descriptions below, we note
these modi�cations.

Besides the high-level question of whether the pseudo-code representations
of the system calls are correct, here are some questions that remain with respect
to modeling the system calls in TAME:

1. What, exactly, happens when the set of permissions associated with a system
call is checked? Are all permissions checked? This is relevant to modeling the
collection of audit information; for example, if the permissions are checked in
a certain order and if the system call fails as soon as one permission is denied,
the fact that a later request that would be audited is also denied might be
missed.

2. Should we model the \setuid" call in some way? It turns up a lot in our
scenarios. But, the documentation implies that it is irrelevant to the security
policy.

3. Can we eliminate any system calls (or additional details of their descriptions)
from our initial model that we have not?

Several notational conventions are used in the individual system call descrip-
tions. Some are from logic and set theory:

1. exists! for \there exists a unique"

2. fxjP (x)g for \the set of all x such that P(x) holds"

3. \A U B" denotes union set of A and B

4. Sets are written uppercase, e.g. PID is the set of process pids.

5. x : TYPE is a type de�nition: it means that x has type TYPE.

6. \f(k) becomes t" denotes function value update to the function f, for argument
k, to the value t.

C.1. Structure of the System

From a security enforcement point of view, the SE Linux kernel is ideally
divided into three parts: a security server, object managers, and the remainder
of the kernel. The object managers layer (from now on called OM) is in charge
of the interaction between the security server and the other parts of the kernel
(from now on called Ker). This appendix mainly describes this layer.
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The OM subsystem is presented by means of its two main interfaces:

1. the Ker - OM interface, consisting of the function Ki.

2. the Security Server - OM interface, consisting of the three functions Ssav,
Sst, and sid.

Caveat: audit mechanisms are not covered in this document.

Some Set De�nitions

BOOL = {True, False}.

PID is the set of process pids.

FILENAME, FILEDESCR, FILESYSTEM, PATHNAME are the set of file names,

file descriptors, file systems, and pathnames, respectively.

SOCKET denotes the Unix datagram socket set and contains the standard

element any_socket.

KERNEL_CALL is the set of system calls.

SID is the set of security ids, i.e. references to security

contexts. SIDU is defined as SID added with the element "undef".

CLASS and PERMISSION are the sets of the security object classes and

permissions, respectively.

STRING is the set of generic strings.

C.2. Interface Function Signatures and Semantics

Kernel interface function Ki

In: proc: PID,

syscall: KERNEL_CALL

Out: res: BOOL with default False,

act: set of KERNEL_CALL with default {}

Notes: The output \res" de�nes the policy check result: True means that the
operation is permitted. The output \act" is a set of system calls that must be
executed.

With a slight abuse of notation, sometimes \syscall" is written using a set
of call names, e.g. fc1,c2g(x), with the obvious meaning that the pseudo-code
appies to either c1(x) or c2(x). Square brackets are used for optional characters
(in regular expression fashion) in the name of a \syscall" argument.



Archer, et al. / Analyzing SE Linux Policies 27

Security Server interface function Ssav

In: source: SID,

target: SID,

obj: CLASS,

perm: PERMISSION

Out: BOOL

Notes: This function is used to ask for permissions, and essentially is a kind of
abstract version of security compute av ([8]).

Security Server interface function Sst

In: source: SID,

target: SID,

obj: CLASS

Out: SIDU

Notes: This function is used for SID transitions or new SID requests. It is a
kind of abstract version of security transition sid ([8]).

Role transitions occur with process transformation, i.e. after execve calls.
The actual role is part of the security context, which is in a one-to-one corre-
spondence with the SID. Therefore security context transitions are managed, in
this abstract representation, by Sst.

Security Server interface function sid

In: obj: PID U FILENAME U FILEDESCR U FILESYSTEM U SOCKET U STRING

U etc.

Out: SIDU

Notes: This function associates a SID to every Linux system item (Process, �le,
etc). More generally, it represents the \security state" of the whole system, and
can be updated as a side e�ect of a Ki call.

C.3. The Kernel Interface Function De�nition

C.3.1. Process Management

Close and Exit

Our signatures: exit(); �close(fd: FILEDESCR)
Pseudocode:

Ki(proc, exit()) :

res = True

side effects: sid(proc) becomes undef.

Ki(proc, close(fd: FILEDESCR)) :

res = True

side effects: sid(fd) becomes undef.
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The Execve kernel call

Standard signature:
int execve (const char *�lename, char *const argv [], char *const envp[]);

Our signature: �execve(p: PATHNAME, f: FILENAME)
Notes:
1. the returned value is ignored
2. char *�lename is split into p (the pathname), and f (the actual �lename)
3. argv and envp are ignored.
4. In \exists! n in SID" in the pseudocode, n = undef is ok, too.

Pseudocode:

Ki(proc, execve(p: PATHNAME, f: FILENAME)) :

res = (exists! n in SID | n = Sst(sid(proc),sid(f),"process")

and (for each directory dir in p

Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(f),"file","execute")

and Ssav(sid(proc),n,"process","transition")

and Ssav(n,sid(f),"process","entrypoint")

and Ssav(n,sid(f),"process","execute"))

act = {close(d) | d in FILEDESCR

and d is used by proc

and not Ssav(new,sid(d),"fd","inherit") }

side effects :

if res and not Sst(sid(proc),sid(f),"process") = undef

then sid(proc) becomes Sst(sid(proc),sid(f),"process").

The Kill kernel call

First, a caveat on signals: the set of possible process signals is partitioned into 4
equivalence classes: sigKill, sigstop, sigchld, and signal (the last one represents all
the other possible signals). It is still unclear how the di�erent signal permissions
are handled. E.g. why do they need every signal permission for Killing another
process? Is sigKill not enough? And if it's not enough, why did they partition
the set of signals?

Standard signature: int kill(pid t pid, int sig);
Our signature: kill(p: PID)
Notes:
1. int sig and the returned value are ignored.
2. p: PID represents pid t pid.
3. We present our version of kill. The original version = wait (see page 27 of

[8]).

Pseudocode:

Ki(proc, kill(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","sigKill").
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Wait

Standard signature: pid t wait(int *status)
Our signature: �wait(child: PID)
Notes:

1. int *status is ignored.
2. child: PID represents the returned value.

Pseudocode:

Ki(proc, wait(child: PID)) :

res = Ssav(sid(child),sid(proc),"process","sigKill")

and Ssav(sid(child),sid(proc),"process","sigstop")

and Ssav(sid(child),sid(proc),"process","sigchld")

and Ssav(sid(child),sid(proc),"process","signal").

Fork

Standard signature: pid t fork(void);
Our signature: �fork(p: PID)
Notes:

1. p: PID represents the returned value.

Pseudocode:

Ki(proc, fork(child: PID)) :

res = Ssav(sid(proc),sid(proc),"process","fork")

side effects : sid(child) becomes sid(proc).

Uselib

Standard signature: int uselib(const char *library);
Our signature: uselib(f: FILENAME)
Notes:

1. the returned value is ignored
2. f: FILENAME represents char *library

Pseudocode:

Ki(proc, uselib(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"process","execute").

Ptrace

Standard signature:
int ptrace(int request, pid t pid, void * addr, void * data)

Our signature: ptrace(p: PID)
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Notes:

1. p: PID represents pid t pid
2. everything else is ignored

Pseudocode

Ki(proc, ptrace(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","ptrace").

Getpriority

Standard signature: int getpriority(int which, int who);
Our signature: getpriority(p: PID)
Notes:

1. int which = PRIO PROCESS, in this case
2. p: PID represents int who
3. the returned value is ignored

Pseudocode:

Ki(proc, {getpriority,getscheduler,getparam}(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","getsched").

Setpriority, Setscheduler, Setparam

Standard signature: int setpriority(int which, int who, int prio);
Our signature: �setpriority(p: PID)
Notes:

1. int which = PRIO PROCESS, in this case
2. p: PID represents int who
3. everything else is ignored

Pseudocode:

Ki(proc, {setpriority,setscheduler,setparam}(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","setsched").

Getsid

Standard signature: pid t getsid(pid t pid);
Our signature: getsid(p: PID)
Notes:

1. p: PID represents pid t pid
2. the returned value is ignored
3. getsid gets the session id

Pseudocode:

Ki(proc, getsid(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","getsession").
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Getpgid, Setpgid

Standard signatures:
pid t getpgid(pid t pid); int setpgid(pid t pid, pid t pgid);

Our signatures: getpgid(p: PID); �setpgid(p: PID)
Notes:

1. p: PID represents pid t pid
2. returned values and pid t pgid are ignored
3. getpgid and setpgid get and set the process group

Pseudocode:

Ki(proc, getpgid(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","getpgid").

Ki(proc, setpgid(p: PID)) :

res = Ssav(sid(proc),sid(p),"process","setpgid").

Process calls without requirements

NOREQ = �get*uid, �get*gid, �getgroups, getitimer, �getpgrp, �getpid,
�getppid, getrlimit, getrusage, signal, sigaction, sigalstack, sigprocmask, sig-
pending, sigsuspend, nanosleep, pause

Ki(proc, call : NOREQ) :

res = True.

C.3.2. Plain File Management

CAVEAT: From [8], page 34:

A �le permission check uses the class of the �le being accessed, so the �le class
in the tables may be the pipe class, the directory class, or any of the �le object
classes.

Note: the �le corresponds to the third argument of Ssav.
Question: pipes are created with the \pipe" call, but this generates two fd (�le
description classes/SIDs). What are the control requirements?

Open

Standard signature: int open(const char *pathname, int ags);
Our signature:

�open(d: FILEDESCR, p: PATHNAME, f: FILENAME,
perms: set of fread, write, appendg)
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Notes:

1. p: PATHNAME, f: FILENAME represent char *pathname
2. perms: set of read, write, append represents int ags
3. d: FILEDESCR represents the returned value
4. The system call described opens an existing �le
5. caveat: �le creation is in dir management
6. Note: from this de�nition of sid(fd) in the \side e�ects" below, it follows that

Ssav(x,y,\fd",\create") should always be called with x = y. Is this true?

Pseudocode:

Ki(proc, open(fld: FILEDESCR, p: PATHNAME, f: FILENAME,

perms: set of {read, write, append})) :

res = (for each directory dir in p

Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(proc),"fd","create")

and (for each p1 in perms Ssav(sid(proc),sid(f),"file", p1)))

side effects : if res then sid(fld) becomes sid(proc).

Read, Readv, Pread, Write, Writev, Pwrite

Standard Signatures:
ssize t write(int fd, const void *buf, size t count);
ssize t read(int fd, void *buf, size t count);

Our signatures:
f�read, readv, pread,�write, writev, pwriteg(�ldes: FILEDESCR,

f: FILENAME)
Notes:

1. f: FILENAME is the open �le corresponding to int fd
2. �ldes: FILEDESCR represents int fd
3. the other parameters/retured value are ignored

Pseudocode:

Ki(proc, {read, readv, pread}(fildes: FILEDESCR, f: FILENAME)) :

res = Ssav(sid(proc),sid(fildes),"fd","setattr")

and Ssav(sid(proc),sid(f),"file","read").

Ki(proc, {write, writev, pwrite}(fildes: FILEDESCR, f: FILENAME)) :

res = Ssav(sid(proc),sid(fildes),"fd","setattr")

and (Ssav(sid(proc),sid(f),"file","write") or

Ssav(sid(proc),sid(f),"file","append")).
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Send�le

Our signature: send�le(in fd, out fd: FILEDESCR, in f, out f: FILENAME)
Pseudocode:

Ki(proc, sendfile(in_fd, out_fd: FILEDESCR, in_f, out_f: FILENAME)) :

res = Ssav(sid(proc),sid(in_fd),"fd","setattr")

and Ssav(sid(proc),sid(in_f),"file","read")

and Ssav(sid(proc),sid(out_fd),"fd","setattr")

and (Ssav(sid(proc),sid(out_f),"file","write") or

Ssav(sid(proc),sid(out_f),"file","append")).

Mmap, Mprotect

Standard signatures:
void *mmap(void *start, size t length, int prot, int ags, int fd, o� t o�set);
int mprotect(const void *addr, size t len, int prot);

Our signatures:
f�mmap, �mprotectg(�ldescr: FILEDESCR, f: FILENAME,

perms: set of fread, write, append, executeg)
Notes:

1. (mmap) �ldescr: FILEDESCR corresponds to int fd

2. (mmap) f: FILENAME is the open �le corresponding to int fd

3. perms corresponds to int prot

4. (mprotect) �ledescr & f are those of the �le "mmapped" at address void
*addr

5. side e�ects for memory? (! munmap)

Pseudocode:

Ki(proc, {mmap, mprotect}(fildescr: FILEDESCR, f: FILENAME,

perms: set of {read, write, append, execute})) :

res = Ssav(sid(proc),sid(filedescr),"fd","setattr")

and (for each p1 in perms-{execute} Ssav(sid(proc),sid(f),"file", p1))

and (if "execute" in perms

then Ssav(sid(proc),sid(f),"process", "execute")

else True).

Stat, Fstat, Lstat

Standard Signatures:
int stat(const char *�le name, struct stat *buf);
int fstat(int �ledes, struct stat *buf);

Our signatures: f�stat, �fstat, lstatg(p: PATHNAME, f: FILENAME)
Notes:

1. (stat) p: PATHNAME, f: FILENAME represent char *�le name

2. (fstat) p: PATHNAME, f: FILENAME represent the complete pathname of
the open �le referenced by int �ledes
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3. remaining items are discarded

Pseudocode:

Ki(proc, {stat, fstat, lstat}(p: PATHNAME, f: FILENAME)) :

res = (for each directory dir in p Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(f),"file","getattr").

Fchown, Lchown, Chown, Fchmod, Chmod, Ftruncate, Truncate, Utime

Standard signatures:
int chown(const char *path, uid t owner, gid t group);

int chmod(const char *path, mode t mode);
int utime(const char *�lename, struct utimbuf *buf);

Our signatures:
f�[f,l]chown, �[f]chmod, [f]truncate, �utime[s]g (p: PATHNAME, f:

FILENAME)

Notes:
1. (chown/chmod) p: PATHNAME, f: FILENAME represent char *path
2. (utime) p: PATHNAME, f: FILENAME represent char *�lename
3. the other parameters/returned value are ignored

Pseudocode:

Ki(proc, {[f,l]chown, [f]chmod, [f]truncate, utime[s]}

(p: PATHNAME, f: FILENAME)) :

res = (for each directory dir in p Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(f),"file","setattr").

Access

Standard signature: int access(const char *pathname, int mode);
Our signature: �access(f: FILENAME)
Notes:

1. f: FILENAME represents char *pathname
2. the other parameters/retured value are ignored
Pseudocode:

Ki(proc, access(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"file","access").

Poll, Select

Our signatures: fpoll, selectg(f: FILENAME)
Pseudocode:

Ki(proc, {poll, select}(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"file","poll").
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Flock, Fcntl

Standard signature: int fcntl(int fd, int cmd);
Our signatures:

ock(f: FILENAME),
�fcntl(f: FILENAME, c: fF GETLK, F SETLK, F SETLKWg)

Notes:

1. f: FILENAME corresponds to the open �le referenced by int fd

2. c represents int cmd, only the commands F GETLK, F SETLK, and
F SETLKW are considered.

Pseudocode:

Ki(proc, {flock, fcntl}(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"file","lock").

Additional fcntl commands

Our signature:
fcntl(f: FILENAME, d: FILEDESCR, cmd: fF SETFL,F GETFL,

F GETOWN,F GETSIG,F SETOWN,F SETSIGg)
Pseudocode:

Ki(proc, fcntl(f: FILENAME, d: FILEDESCR,

cmd: {F_SETFL,F_GETFL,F_GETOWN,F_GETSIG,F_SETOWN,F_SETSIG})) :

res = if cmd = "F_SETFL"

then Ssav(sid(proc),sid(d),"fd","setattr")

and Ssav(sid(proc),sid(f),"file","write")

elsif cmd = "F_SETOWN" or cmd = "F_SETSIG"

then Ssav(sid(proc),sid(d),"fd","setattr")

else Ssav(sid(proc),sid(d),"fd","getattr").

Lseek

Standard signature: o� t lseek(int �ldes, o� t o�set, int whence);
Our signature: �lseek(d: FILEDESCR)
Notes:

1. d: FILEDESCR corresponds to int �ldes

2. everything else is ignored

Pseudocode:

Ki(proc, lseek(d: FILEDESCR)) :

res = Ssav(sid(proc),sid(d),"fd","setattr").

C.3.3. Some ioctl calls... (i/o �les access)

Note: From the man page of ioctl:



36 Archer, et al. / Analyzing SE Linux Policies

Arguments, returns, and semantics of ioctl vary according to the device driver
in question (the call is used as a catch-all for operations that don't cleanly �t
the Unix stream I/O model).

The standard signature of ioctl is:

int ioctl(int d, int request, ...)

where int d is usually an open �le descriptor, int request is the name of the ioctl
call, and the third argument depends on the name of the call.

In our de�nitions, we put the name argument of the call (i.e. \request") as
sort of tag in the same name of the call, because it ideally is not a parameter.
For example the name ioctl FIBMAP stands for the FIBMAP ioctl call, i.e. with
d = FIBMAP.

Ioctl FIBMAP, Ioctl FIONREAD

Our signatures:
ioctl fFIBMAP,FIONREAD,SETFLAGS,SETVERSIONg

(f: FILENAME, fd: FILEDESCR)
Pseudocode:

Ki(proc, ioctl_FIBMAP(f: FILENAME, fd: FILEDESCR)) :

res = Ssav(sid(proc),sid(f),"file","ioctl")

and Ssav(sid(proc),sid(f),"file","getattr").

Ki(proc, ioctl_FIONREAD(f: FILENAME, fd: FILEDESCR)) :

res = Ssav(sid(proc),sid(f),"file","ioctl")

and Ssav(sid(proc),sid(fd),"fd","getattr")

and Ssav(sid(proc),sid(f),"file","getattr").

Ki(proc, ioctl_{SETFLAGS, SETVERSION} (f: FILENAME, fd: FILEDESCR)) :

res = Ssav(sid(proc),sid(f),"file","ioctl")

and Ssav(sid(proc),sid(f),"file","setattr").

Ioctl calls using a �le descriptor

Our signature: fioctl FIONBIO, ioctl FIOASYNCg(d: FILEDESCR)
Pseudocode:

Ki(proc, {ioctl_FIONBIO,ioctl_FIOASYNC}(d: FILEDESCR)) :

res = SAV(sid(proc),sid(d),"fd","setattr").

Generic ioctl call

Standard signature: int ioctl(int d, int request, char *argp)
Our signature: �ioctl(f: FILENAME)
Notes:

1. f: FILENAME corresponds to int d, the device descriptor
2. int request is not considered here, but can change the semantics of the ioctl

call
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3. char *argp depends on int request, therefore is ignored here

Pseudocode:

Ki(proc, ioctl(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"file","ioctl").

C.3.4. Directory Management

Chdir, Fchdir, Chroot

Standard signature: int chdir(const char *path);
Our signatures: f�[f]chdir, chrootg(p: PATHNAME))
Notes:

1. p: PATHNAME corresponds to char *path
2. the return value is ignored

Pseudocode:

Ki(proc, {[f]chdir, chroot}(p: PATHNAME)) :

res = (for each directory dir in p Ssav(sid(proc),sid(dir),"dir","search")).

Creat, Open

Standard signature: int open(const char *pathname, int ags);
Our signatures:
f�creat, �openg(d: FILEDESCR, s: FILESYSTEM, p: PATHNAME, f:

FILENAME, perms: set of fread, write, appendg)
Notes:

1. creat opens a nonexisting �le
2. p: PATHNAME, f: FILENAME represent char *pathname
3. perms: set of read, write, append represents int ags
4. d: FILEDESCR represents the returned value
5. s: FILESYSTEM represents the current �le system

Pseudocode:

Ki(proc, {creat, open}(fld: FILEDESCR, fls: FILESYSTEM,

p: PATHNAME, f: FILENAME, perms: set of {read, write, append})) :

res = (exists! n in SID |

n = Sst(sid(proc),sid(last element of p),"file")

and Ssav(sid(proc),n,"file","create")

and Ssav(n,sid(fls),"fs","associate"))

and (for each directory dir in p Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(proc),"fd","create")

and Ssav(sid(proc),sid(last element of p),"dir","add_name")

and (for each p1 in perms Ssav(sid(proc),sid(f),"file", p1))
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side effects :

if res then

sid(fld) becomes sid(proc)

and if not Sst(sid(proc),sid(last element of p),"file") = undef

then sid(f) becomes Sst(sid(proc),sid(last element of p),"file")

else sid(f) becomes sid(last element of p).

Mkdir, Mknod, Symlink

Our signatures:
fmkdir,mknod,symlinkg(s: FILESYSTEM, p: PATHNAME, d: FILENAME)
Notes:

1. mknod - make a character special �le
2. symlink - create a symbolic link
3. note: a directory is a �le, too

Pseudocode:

Ki(proc, mkdir (fls: FILESYSTEM, p: PATHNAME, d: FILENAME)) :

res = (exists! n in SID |

n = Sst(sid(proc),sid(last element of p),"dir")

and (for each directory dir in p

Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","add_name")

and Ssav(sid(proc),n,"file","create")

and Ssav(n,sid(fls),"fs","associate").

side effects: if res then

if not Sst(sid(proc),sid(last element of p),"dir") = undef

then sid(d) becomes Sst(sid(proc),sid(last element of p),"dir")

else sid(d) becomes sid(last element of p).

Ki(proc, mknod (fls: FILESYSTEM, p: PATHNAME, d: FILENAME)) :

res = (exists! n in SID |

n = Sst(sid(proc),sid(last element of p),"chr_file")

and (for each directory dir in p

Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","add_name")

and Ssav(sid(proc),n,"file","create")

and Ssav(n,sid(fls),"fs","associate").

side effects: if res then

if not Sst(sid(proc),sid(last element of p),"chr_file") = undef

then sid(d) becomes Sst(sid(proc),sid(last element of p),"chr_file")

else sid(d) becomes sid(last element of p).
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Ki(proc, symlink (fls: FILESYSTEM, p: PATHNAME, d: FILENAME)) :

res = (exists! n in SID |

n = Sst(sid(proc),sid(last element of p),"lnk_file")

and (for each directory dir in p

Ssav(sid(proc),sid(dir),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","add_name")

and Ssav(sid(proc),n,"file","create")

and Ssav(n,sid(fls),"fs","associate").

side effects: if res then

if not Sst(sid(proc),sid(last element of p),"lnk_file") = undef

then sid(d) becomes Sst(sid(proc),sid(last element of p),"lnk_file")

else sid(d) becomes sid(last element of p).

Rename

Standard signature: int rename(const char *oldpath, const char *newpath);
Our signature:

�rename(oldp: PATHNAME, oldf: FILENAME,
newp: PATHNAME, newf: FILENAME)

Notes:

1. oldp: PATHNAME, oldf: FILENAME correspond to char *oldpath
2. newp: PATHNAME, newf: FILENAME correspond to char *newpath
3. return value ignored

Pseudocode:

Ki(proc, rename(oldp: PATHNAME, oldf: FILENAME, newp: PATHNAME, newf: FILENAME)):

res = (for each directory d in oldp Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(last element of oldp),"dir","remove_name")

and (for each directory d in newp Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(oldf),"file","rename")

and Ssav(sid(proc),sid(last element of newp),"dir","add_name")

and (if oldf is a directory

and not (last element of oldp = last element of newp)

then Ssav(sid(proc),sid(newf),"dir","reparent")

else True)

and (if newp/newf exists

then Ssav(sid(proc),sid(last element of newp),"dir","remove_name")

and (if newf is a directory

then Ssav(sid(proc),sid(newf),"dir","rmdir")

else Ssav(sid(proc),sid(newf),"file","unlink"))

else True).
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Link

Standard signature: int link(const char *oldpath, const char *newpath);
Our signature: �link(p: PATHNAME, f: FILENAME)
Notes:

1. p: PATHNAME, f: FILENAME correspond to char *newpath
2. return value ignored

Pseudocode:

Ki(proc, link(p: PATHNAME, f: FILENAME)) :

res = (for each directory d in p Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","add_name")

and Ssav(sid(proc),sid(f),"file","link").

Unlink

Standard signature: int unlink(const char *pathname);
Our signature: �unlink(p: PATHNAME, f: FILENAME)
Notes:

1. p: PATHNAME, f: FILENAME correspond to char *pathname
2. return value ignored

Pseudocode:

Ki(proc, unlink(p: PATHNAME, f: FILENAME)) :

res = (for each directory d in p Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","remove_name")

and Ssav(sid(proc),sid(f),"file","unlink").

Rmdir

Our signature: rmdir(p: PATHNAME, f: FILENAME)
Pseudocode:

Ki(proc, rmdir(p: PATHNAME, f: FILENAME)) :

res = (for each directory d in p

Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(last element of p),"dir","remove_name")

and Ssav(sid(proc),sid(f),"dir","rmdir").

Getdents, Readdir

Standard signature:
int getdents(unsigned int fd, struct dirent *dirp, unsigned int count);

Our signature: f�getdents, readdirg(fd: FILEDESCR, d: FILENAME)
Notes:

1. fd: FILEDESCR corresponds to int fd
2. d: FILENAME corresponds to dirent *dirp
3. int count & return value are ignored
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Pseudocode:

Ki(proc, {getdents, readdir} (fd: FILEDESCR, d: FILENAME)) :

res = Ssav(sid(proc),sid(df),"fd","setattr")

and Ssav(sid(proc),sid(d),"dir","read").

Readlink

Standard signature: int readlink(const char *path, char *buf, size t bufsiz);
Our signature: �readlink(f: FILENAME)
Notes:

1. f: FILENAME corresponds to char *path

2. everything else is ignored

Pseudocode:

Ki(proc, readlink(f: FILENAME)) :

res = Ssav(sid(proc),sid(f),"file","read").

C.3.5. Socket Management

We limit ourselves to Unix datagram sockets. Note: the notation used is
analogous to the one for ioctl calls.

Socket unix dgram

Standard signature: int socket(int domain, int type, int protocol);
Our signature: �socket UNIX DGRAM(so : SOCKET)
Notes:

1. so : SOCKET corresponds to the returned value

2. int domain is PF UNIX

3. int type is SOCK DGRAM

4. int protocol is 0

Pseudocode:

Ki(proc, socket_UNIX_DGRAM(so : SOCKET)) :

res = Ssav(sid(proc),sid(so),"socket","create").

Connect unix dgram

Standard signature:

int connect(int sockfd, struct sockaddr *serv addr, int addrlen);
Our signature:
�connect UNIX DGRAM(so : SOCKET, p : PATHNAME, f : FILENAME)

Notes:

1. so: SOCKET corresponds to int sockfd
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2. p: PATHNAME, f: FILENAME corresponds to the �le representing the
socket. This information is encoded in the structure sockaddr *serv addr.
addrlen contains the length of the structure in bytes.

3. everything else is ignored

Pseudocode:

Ki(proc, connect_UNIX_DGRAM(so : SOCKET,

p : PATHNAME, f : FILENAME)) :

res = (for each directory d in p Ssav(sid(proc),sid(d),"dir","search"))

and Ssav(sid(proc),sid(f),"sock_file","write")

and Ssav(sid(proc),sid(so),"socket","connect").

Send unix dgram

Standard signature: int send(int s, const void *msg, int len, unsigned int ags);
Our signature: �send UNIX DGRAM (so : SOCKET, msg : STRING)
Notes:

1. so: SOCKET corresponds to int s
2. msg : STRING corresponds to void *msg
3. everything else is ignored

Pseudocode:

Ki(proc, send_UNIX_DGRAM(so : SOCKET, msg : STRING)) :

res = Ssav(sid(proc),sid(so),"socket","write")

and Ssav(sid(so),sid(any_socket),"socket","sendto")

and Ssav(sid(so),sid(msg),"socket","send_msg").

Recv unix dgram

Standard signature: int recv(int s, void *buf, int len, unsigned int ags);
Our signature: �recv UNIX DGRAM (so : SOCKET, msg : STRING)
Notes:

1. so: SOCKET corresponds to int s
2. msg : STRING corresponds to the returned value
3. everything else is ignored

Pseudocode:

Ki(proc, recv_UNIX_DGRAM(so : SOCKET, msg : STRING)) :

res = Ssav(sid(proc),sid(so),"socket","read")

and Ssav(sid(so),sid(any_socket),"socket","recvfrom")

and Ssav(sid(so),sid(msg),"socket","recv_msg").


